

Trundle project – Significant Interval Summary

Appendix to Management's Discussion & Analysis for the year-end December 31st, 2021

Table 1: Collar Information

Target	Hole#	Length (m)	Dip (°)	Azimuth (°)	RL	Easting (MGA)	Northing (MGA)	Core <u>recovery</u>	Assay results	Press release
Trundle Park	TRDD001	685	60	262	270	570049	6352082	95.90%	Yes	1
Mordialloc	TRDD002	790	60	101	271	568443	6360363	98.20%	Yes	2
Bayleys	TRDD003	721	60	329	274	569230	6360641	99.50%	Yes	3
Trundle Park	TRDD004	694	55	264	271	569780	6352079	99.60%	Yes	3
Mordialloc	TRDD005	958	60	110	266	568439	6360204	97.30%	Yes	3
Mordialloc	TRDD006	962	70	275	267	568599	6360206	98.90%	Yes	4
Trundle Park	TRDD007	521	60	264	268	570012	6352230	84.40%	Yes	6,7
Trundle Park	TRDD008	490	60	264	272	569920	6351962	97.10%	Yes	4,5
Trundle Park	TRDD009	445	60	310	267	569611	6352378	99.20%	Yes	6,7
Trundle Park	TRDD010	643	60	330	272	569963	6351919	96.40%	Yes	6,7
Trundle Park	TRDD011	332	55	330	270	570035	6352041	94.80%	Yes	5,7
Trundle Park	TRDD012	581	55	330	270	570062	6351997	85.60%	Yes	5,7
Trundle Park	TRDD013	402	60	330	272	570012	6351827	94.60%	Yes	6,7
Trundle Park	TRDD014	670	65	330	275	569833	6351808	97.40%	Yes	7
Trundle Park	TRDD015	550	60	330	270	570088	6351952	98.10%	Yes	7
Trundle Park	TRDD016	496	60	330	268	570029	6352250	89.40%	Yes	7
Trundle Park	TRDD017	691	55	150	272	569684	6352060	98.73%	Yes	8
Trundle Park	TRDD018	484	55	330	268	570136	6352352	97.40%	Yes	8
Mordialloc	TRDD019	943	75	320	262	568697	6360065	100.0%	Yes	8
Mordialloc	TRDD020	718	60	140	273	568227	6360865	99.80%	Yes	8
Mordialloc	TRDD021	736	60	140	274	568419	6360647	99.21%	Yes	
Trundle Park	TRDD022	940	55	274	269	570073	6352099	88.07%	Yes	9
Trundle Park	TRDD023	307	60	320	269	570085	6352076	91.30%	Yes	10
Mordialloc NE	TRDD024	571	70	280	285	569846	6361939	96.65%		
Mordialloc SW	TRDD025	397	60	70	259	567718	6359613	94.95%		
Trundle Park	TRDD026	843	60	85	267	569292	6352233	98.15%	Yes	10
Trundle Park	TRDD014W1	578 (EOH 877)	55	338	275	569833	6351808	98.70%	Yes	10
Trundle Park	TRDD027	319	60	250	272	568913	6352255	92.30%		
Trundle Park	TRDD028	879	75	340	274	569633	6351934	98.98%	Yes	11
Trundle Park	TRDD029	1033	55	160	270	569522	6352103	97.19%	Yes	11
Trundle Park	TRDD030	1015	67	350	273	569620	6351427	99.86%		
Trundle Park	TRDD031	903	60	346	273	569567	6351424	98.93%		
Trundle Park	TRDD032	ongoing	60	350	278	569774	6351168			
Metres drilled		21,297								

For further details, including QAQC procedures, please refer to the following press releases:

- 1. July 6, 2020 Kincora announces high-grade gold-copper results from first hole at Trundle
- 2. July 23, 2020 Kincora reports further strong encouragement at Trundle
- 3. September 3, 2020 Kincora provides update on expanded drilling program at Trundle
- 4. November 30, 2020 Kincora intersects broad mineralised zones at Trundle
- 5. January 20, 2021 Kincora intersects further shallow mineralization at Trundle
- 6. March 2021 Independent Technical Report for the ASX prospectus
- 7. April 22, 2021 Exploration Update
- 8. July 8, 2021 Exploration portfolio drilling update
- 9. August 17, 2021 Significant gold-bearing intervals at Trundle Park
- 10. December 7, 2021 Porphyry system extended to surface and depth at Trundle Park
- 11. January 25, 2022 Multiple broad higher-grade intervals at Trundle Park
- 12. March 15, 2022 Further confirmation of new discovery and broad intervals at Trundle Park
- 13. March, 2022 Appendix to Management's Discussion and Analysis for the year ended December 31st 2021

Hole ID	From (m)	To (m)	Interval (m)		Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD001	39.0	90.0	51.0	1	1.17	0.54	1.38	32%
including	57.6	78.1	20.5	1	1.94	1.18	1.40	8%
incl.	57.6	65.6	8.0	1	3.07	1.95	1.82	0%
incl.	57.6	59.6	2.0	1	5.78	2.78	1.05	0%
including	75.9	78.1	2.2	1	4.32	2.43	1.75	0%
and	284.0	302.0	18.0		0.53	0.05	2.81	11%
including	284.0	287.0	3.0		1.80	0.18	0.80	0%
and	664.0	685.1	21.1		0.25	0.03	5.95	5%

Table 2: Trundle Park prospect: TRDD001

Reported July 6th, 2020, *"Kincora announces high-grade gold-copper results from first hole at Trundle"* Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off; and, ¹Interpreted near surface skarn gold and copper intercepts are calculated using a lower cut of 0.20g/t and 0.10% respectively. Internal dilution is below cut off

Table 3: Mordialloc prospect: TRDDoo2

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD002	207.0	267.0	60.0	0.06	0.05	6.72	62%
and	281.0	283.6	2.6	0.05	0.10	1.77	23%
and	348.0	397.7	49.7	0.04	0.05	6.73	58%
and	587.0	588.5	1.5	0.07	0.07	23.53	0%
and	642.0	648.0	6.0	0.07	0.11	69.50	0%
and	721.0	790.3	69.3	0.03	0.05	29.70	58%
including	721.0	738.5	17.5	0.05	0.11	106.47	9%

Reported July 23rd, 2020, *"Kincora reports further strong encouragement at Trundle"*

Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD003	164.0	166.0	2.0	0.01	0.08	1.00	0%
and	207.2	209.0	1.8	0.01	0.17	4.00	0%
and	338.0	340.0	2.0	0.12	0.01	0.00	0%
and	373.4	375.0	1.6	0.14	0.37	1.00	0%
and	505.0	509.0	4.0	0.00	0.17	1.00	0%

Table 4: Bayleys prospect (part of the wider Mordialloc intrusive system): TRDDoo3

Reported September 3rd, 2020, *"Kincora provides update on expanded drilling program at Trundle"* Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD004	332.0	336.0	4.0	0.35	0.01	0.00	0%
and	340.0	342.0	2.0	0.13	0.01	0.00	0%
and	394.0	396.0	2.0	0.27	0.02	1.00	0%
and	434.0	436.0	2.0	0.11	0.01	2.00	0%
and	508.0	512.0	4.0	0.16	0.01	2.00	0%
and	518.0	520.0	2.0	0.42	0.00	3.00	0%
and	578.0	582.0	4.0	0.14	0.01	3.50	0%
and	642.0	646.0	4.0	0.23	0.02	4.00	0%

Table 5: Trundle Park prospect: TRDD004

Reported September 3rd, 2020, *"Kincora provides update on expanded drilling program at Trundle"* Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off

Table 6: Mordialloc prospect: TRDD005

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD005	24.0	54.0	30.0	0.10	0.08	10.47	27%
including	36.0	40.0	4.0	0.29	0.14	10.50	0%
and	138.0	150.0	12.0	0.33	0.29	35.00	0%
including	142.0	146.0	4.0	0.81	0.67	91.50	0%
incl.	142.0	144.0	2.0	1.41	1.02	176.00	0%
and	184.0	188.0	4.0	0.11	0.18	18.50	0%
and	228.0	254.0	26.0	0.07	0.16	24.92	0%
including	242.0	246.0	4.0	0.12	0.26	39.00	0%
and	270.0	288.0	18.0	0.08	0.18	43.00	0%
and	596.0	600.0	4.0	0.12	0.22	0.50	0%
and	632.0	644.0	12.0	0.66	0.14	4.00	17%
including	634.0	636.0	2.0	3.36	0.14	4.00	0%
including	638.0	640.0	2.0	0.11	0.15	1.00	0%
and	682.0	684.0	2.0	0.11	0.66	1.00	0%
and	690.0	692.0	2.0	1.17	0.01	1.00	0%
and	736.0	748.0	12.0	0.15	0.07	6.67	33%
and	770.0	772.0	2.0	0.08	0.12	4.00	0%
and	782.0	806.0	24.0	0.25	0.08	2.42	33%
including	782.0	790.0	8.0	0.64	0.06	2.50	0%
and	876.0	886.0	10.0	0.14	0.94	13.60	0%
including	880.0	884.0	4.0	0.27	2.14	27.00	0%

Reported September 3rd, 2020, *"Kincora provides update on expanded drilling program at Trundle"* Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD006	62.0	104.0	42.0	0.04	0.07	7.43	24%
including	62.0	70.0	8.0	0.05	0.09	7.25	0%
including	78.0	84.0	6.0	0.04	0.08	3.33	0%
including	86.0	98.0	12.0	0.05	0.09	15.33	0%
incl.	90.0	92.0	2.0	0.14	0.14	39.00	0%
and	144.0	450.0	306.0	0.06	0.10	18.35	14%
including	152.0	154.0	2.0	0.08	0.12	2.00	0%
including	242.0	244.0	2.0	0.34	0.07	29.00	0%
including	382.0	390.0	8.0	0.16	0.19	36.25	0%
incl.	384.0	386.0	2.0	0.24	0.31	52.00	0%
and	466.0	564.0	98.0	0.07	0.11	17.61	6%
including	514.0	516.0	2.0	0.35	0.17	9.00	0%
and	620.0	644.0	24.0	0.04	0.06	9.17	17%
and	732.0	734.0	2.0	0.08	0.14	3.00	0%
and	742.0	744.0	2.0	0.15	0.20	4.00	0%
and	764.0	766.0	2.0	0.05	0.08	1.00	0%
and	824.0	830.0	6.0	0.05	0.09	3.67	0%
and	880.0	882.0	2.0	0.98	0.02	2.00	0%

Table 7: Mordialloc prospect: TRDD006

Reported November 30th, 2020, *"Kincora intersects broad mineralized zones at Trundle"* Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off

							mat in the second
Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD007	2.6	41.9	39.3	0.21	0.03	0.96	11%
including	2.6	4.0	1.4 ¹	0.39	0.03	0.00	0%
including	12.0	14.0	2.0 ¹	0.64	0.03	1.00	0%
including	18.0	20.0	2.0	0.36	0.03	0.00	0%
including	26.0	30.0	4.0	0.38	0.03	2.00	0%
and	72.0	84.0	12.0	0.16	0.02	0.50	17%
including	80.0	84.0	4.0	0.28	0.03	1.00	0%
and	138.0	144.0	6.0	0.21	0.01	1.33	0%
and	158.0	166.0	8.0	0.96	0.34	5.50	0%
including	160.0	164.0	4.0	1.62	0.64	8.50	0%
and	182.0	194.0	12.0	0.15	0.02	3.17	17%
including	188.0	190.0	2.0	0.31	0.03	3.00	0%
and	392.0	416.0	24.0	0.16	0.03	0.92	17%
including	404.0	410.0	6.0	0.25	0.04	0.67	0%
and	448.0	452.0	4.0	0.15	0.01	1.00	0%
and	496.0	504.0	8.0	0.12	0.00	2.00	25%
and	514.0	521.3	7.3	0.21	0.02	14.33	27%
including	514.0	516.0	2.0	0.45	0.02	13.00	0%

Table 8: Trundle Park prospect: TRDDoo7

Reported April 22nd, 2021, *"Kincora provides exploration update"*

Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off; and, ¹Interpreted near surface skarn gold and copper intercepts are calculated using a lower cut of 0.20g/t and 0.10% respectively. Internal dilution is below cut off

Hole ID	From (m)	To (m)	Interval (m)		Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD008	0.0	87.7	87.7	*1	0.65	0.19	1.11	16%
including	0.0	16.4	16.4	*1	1.51	0.19	0.34	4%
including	0.0	6.0	6.0	1	3.73	0.25	0.67	0%
including	34.0	40.0	6.0		0.60	0.43	0.67	0%
including	52.0	87.7	35.7	*	0.69	0.24	0.17	3%
incl.	66.0	74.0	8.0	*	1.63	0.57	0.00	13%
and	134.0	142.0	8.0		0.26	0.12	2.25	0%
and	172.0	178.0	6.0		0.01	0.06	0.67	0%
and	262.0	272.0	10.0		0.21	0.15	0.80	0%
and	305.0	332.0	27.0		0.10	0.07	0.56	26%
and	379.0	384.0	5.0		0.18	0.02	0.00	20%
and	379.0	407.0	28.0		0.33	0.15	0.61	14%
including	394.0	398.0	4.0		0.94	0.57	1.50	0%
and	422.0	424.0	2.0		0.16	0.02	1.00	0%

Table 9: Trundle Park prospect: TRDDoo8

Reported January 20th, 2021, "Kincora intersects further shallow mineralization at Trundle"

Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off; ¹Interpreted near surface skarn gold and copper intercepts are calculated using a lower cut of 0.20g/t and 0.10% respectively. Internal dilution is below cut off; and, * Dilutions related with Core loss

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD009	6.0	10.0	4.0	0.43	0.01	1.50	0%
and	80.0	82.0	2.0	0.13	0.05	0.00	0%
and	228.0	230.0	2.0	0.22	0.01	2.00	0%
and	274.0	276.0	2.0	0.12	0.04	1.00	0%
and	280.0	282.0	2.0	0.10	0.03	3.00	0%
and	286.0	290.0	4.0	0.11	0.03	2.00	0%
and	300.0	302.0	2.0	0.19	0.04	3.00	0%
and	316.0	326.0	10.0	0.10	0.04	7.80	20%
and	330.0	336.0	6.0	0.10	0.05	35.33	33%
and	346.0	348.0	2.0	0.10	0.02	4.00	0%
and	350.0	352.0	2.0	0.11	0.04	35.00	0%
and	366.0	372.0	6.0	0.16	0.11	8.67	0%
and	384.0	398.0	14.0	0.11	0.05	2.57	29%
including	384.0	390.0	6.0	0.15	0.06	2.67	0%
including	396.0	398.0	2.0	0.13	0.06	3.00	0%
and	416.0	418.0	2.0	0.30	0.01	2.00	0%

Table 10: Trundle Park prospect: TRDD009

Reported April 22nd, 2021, *"Kincora provides exploration update"*

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD010	186.0	190.0	4.0	0.25	0.10	1.50	0%
and	218.0	242.0	24.0	0.16	0.11	1.08	8%
including	224.0	228.0	4.0	0.19	0.11	1.00	0%
including	234.0	242.0	8.0	0.26	0.17	1.00	0%
and	276.0	278.0	2.0	0.08	0.07	2.00	0%
and	284.0	288.0	4.0	0.30	0.13	4.00	0%
and	314.0	318.0	4.0	0.49	0.05	1.00	0%
and	592.0	600.0	8.0	0.15	0.04	4.50	0%

Table 11: Trundle Park prospect: TRDD010

Reported April 22nd, 2021, "Kincora provides exploration update"

Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD011	0.0	74.0	74.0 *	¹ 0.37	0.40	0.20	23%
including	0.0	22.0	22.0 *	¹ 0.12	0.09	0.10	32%
including	32.0	74.0	42.0	0.58	0.64	0.30	10%
including	38.0	50.0	12.0	0.26	0.14	0.17	0%
including	58.0	72.0	14.0	1.39	1.69	0.76	0%
incl.	68.0	72.0	4.0	3.36	4.98	1.91	0%
and	90.0	94.0	4.0	0.06	0.07	1.00	0%
and	180.0	184.0	4.0	0.20	0.01	0.00	0%
and	262.0	268.0	6.0	0.12	0.00	0.33	0%
and	302.0	304.0	2.0	0.11	0.02	3.00	0%
and	310.0	312.0	2.0	0.13	0.01	0.00	0%
and	330.0	332.2	2.2	0.14	0.02	15.00	0%

Table 12: Trundle Park prospect: TRDD011

Reported April 22nd, 2021, *"Kincora provides exploration update"*

Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off; ¹Interpreted near surface skarn gold and copper intercepts are calculated using a lower cut of 0.20g/t and 0.10% respectively. Internal dilution is below cut off; and, * Dilutions related with Core loss

TRDD012 including	86.0	00.0			Au (g/t)	Cu (%)	mo (ppm)	Dilution (%)
including		99.0	13.0	*	0.07	0.06	0.27	27%
meraamg	97.0	99.0	2.0		0.11	0.05	0.50	0%
and	117.7	123.4	5.7	*	0.09	0.03	0.29	36%
and	191.0	236.0	45.0		0.19	0.07	4.22	24%
including	191.0	193.0	2.0		0.22	0.17	3.50	0%
including	195.0	197.0	2.0		0.05	0.87	1.00	0%
including	204.0	236.0	32.0		0.24	0.03	5.56	13%
incl.	204.0	205.0	1.0		1.17	0.09	1.00	0%
incl	230.0	234.0	4.0		0.46	0.02	5.00	0%
and	340.0	342.0	2.0		0.11	0.13	1.00	0%
and	358.0	370.0	12.0		0.05	0.07	23.33	17%
and	380.0	408.0	28.0		0.07	0.07	11.07	7%
including	386.0	388.0	2.0		0.17	0.17	6.00	0%
including	400.0	404.0	4.0		0.14	0.13	11.00	0%
and	416.0	420.0	4.0		0.41	0.12	8.00	0%
and	500.0	526.0	26.0		0.43	0.08	3.92	31%
including	500.0	506.0	6.0		1.37	0.05	2.67	0%
including	512.0	518.0	6.0		0.22	0.03	5.00	0%
including	522.0	524.0	2.0		0.39	0.47	4.00	0%
and	536.0	540.0	4.0		0.12	0.02	1.00	0%
and	544.0	550.0	6.0		0.22	0.05	4.00	0%
and	552.0	554.0	2.0		0.17	0.02	3.00	0%
and	578.0	580.0	2.0		0.20	0.05	2.00	0%

Table 13: Trundle Park prospect: TRDD012

Reported April 22nd, 2021, *"Kincora provides exploration update"*

Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off; and, * Dilutions related with Core loss

Table 14: Trundle Park prospect: TRDD013

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD013	306.0	308.0	2.0	0.10	0.01	0.00	0%

Reported April 22nd, 2021, "Kincora provides exploration update"

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD014	206.0	238.0	32.0	0.12	0.12	0.44	19%
including	230.0	238.0	8.0	0.31	0.21	0.00	0%
and	270.0	272.0	2.0	0.19	0.01	0.00	0%
and	302.0	304.0	2.0	0.14	0.03	0.00	0%
and	358.0	402.0	44.0	0.20	0.12	0.86	36%
including	385.0	392.0	7.0	0.64	0.53	1.57	0%
and	430.0	432.0	2.0	0.38	0.02	0.00	0%
and	454.4	456.0	1.6	0.22	0.08	1.00	0%
and	464.0	470.0	6.0	0.19	0.03	0.55	0%
and	482.0	504.0	22.0	0.23	0.07	1.28	30%
including	486.7	488.0	1.3	2.34	0.54	1.00	0%
including	498.0	500.0	2.0	0.30	0.10	1.30	0%
and	516.4	518.0	1.6	0.11	0.02	5.00	0%
and	534.0	538.0	4.0	0.23	0.03	3.00	0%
and	544.0	550.0	6.0	0.14	0.01	7.33	0%
and	572.2	574.0	1.8	0.12	0.03	2.00	0%
and	592.0	596.0	4.0	0.13	0.05	2.50	0%
and	600.0	665.5	65.5	0.25	0.04	5.16	15%
including	626.0	636.0	10.0	0.73	0.10	4.80	0%
including	646.0	654.0	8.0	0.27	0.05	6.44	0%

Table 15: Trundle Park prospect: TRDD014

Reported April 22nd, 2021, *"Kincora provides exploration update"*

Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD015	216.0	236.0	20.0	0.16	0.06	2.70	30%
including	224.0	236.0	12.0	0.22	0.08	2.00	0%
and	240.0	248.0	8.0	0.12	0.02	4.00	25%
and	260.0	264.0	4.0	0.19	0.04	1.50	0%
and	296.0	298.0	2.0	0.11	0.05	4.00	0%
including	300.0	302.0	2.0	0.18	0.09	10.00	0%
and	344.0	348.0	4.0	0.28	0.23	9.00	0%
and	358.0	360.0	2.0	0.10	0.08	3.00	0%
and	376.0	378.0	2.0	0.00	0.10	12.00	0%
and	382.0	386.0	4.0	0.00	0.07	2.50	0%
and	396.0	398.0	2.0	0.00	0.07	62.00	0%
and	412.0	418.0	6.0	0.08	0.06	28.00	0%
and	426.0	438.0	12.0	0.13	0.10	79.50	17%
including	426.0	428.0	2.0	0.33	0.23	78.00	0%
and	452.0	460.0	8.0	0.07	0.06	47.25	0%
and	500.0	502.0	2.0	0.06	0.05	11.00	0%

Table 16: Trundle Park prospect: TRDD015

Reported April 22nd, 2021, *"Kincora provides exploration update"*

Hole ID	From (m)	To (m)	Interval (m)		Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD016	4.0	6.6	2.6	*1	0.21	0.00	0.00	23%
and	12.6	16.2	3.6	*1	0.26	0.01	0.00	43%
and	20.1	76.0	56.0	*1	0.30	0.01	0.78	26%
including	22.3	28.0	5.7	1	0.53	0.01	0.00	0%
including	34.0	50.0	16.0	1	0.31	0.01	0.13	0%
including	58.0	70.0	12.0		0.46	0.02	2.67	0%
and	104.0	110.0	6.0		0.19	0.01	1.00	0%
and	124.0	126.0	2.0		0.13	0.02	7.00	0%
and	130.0	196.0	66.0		0.21	0.03	5.09	24%
including	130.0	170.0	40.0		0.29	0.04	7.90	0%
incl.	130.0	136.0	6.0		0.63	0.10	32.33	0%
incl.	146.0	152.0	6.0		0.46	0.07	1.33	0%
including	172.0	174.0	2.0		0.13	0.00	1.00	0%
including	180.0	184.0	4.0		0.16	0.00	1.00	0%
and	216.0	238.0	22.0		0.30	0.01	0.45	0%
including	216.0	222.0	6.0		0.52	0.01	0.67	0%
and	252.0	256.0	4.0		0.14	0.02	1.00	0%
and	298.0	300.0	2.0		0.11	0.01	1.00	0%
and	304.0	308.0	4.0		0.24	0.03	0.50	0%
and	402.0	404.0	2.0		0.13	0.06	0.00	0%

Table 17: Trundle Park prospect: TRDD016

Reported April 22nd, 2021, *"Kincora provides exploration update"*

Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off; ¹Interpreted near surface skarn gold and copper intercepts are calculated using a lower cut of 0.20g/t and 0.10% respectively. Internal dilution is below cut off; and, * Dilutions related with Core loss

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD017	56.0	58.0	2.0	0.39	0.01	2.00	0%
and	260.0	262.0	2.0	0.02	0.47	8.00	0%
and	288.0	292.0	4.0	0.02	0.18	2.50	0%
TRDD017W1	336.0	340.0	4.0	0.03	0.07	0.00	0%
and	394.0	402.0	8.0	0.14	0.06	0.50	25%
including	400.0	402.0	2.0	0.24	0.11	1.00	0%
and	408.0	454.0	46.0	0.21	0.09	0.65	26%
including	412.0	424.0	12.0	0.16	0.07	0.00	0%
including	434.0	442.0	8.0	0.36	0.13	1.00	10%
incl.	440.0	442.0	2.0	1.00	0.32	1.00	0%
and	466.0	468.0	2.0	0.12	0.00	0.00	0%
and	472.0	488.0	16.0	0.09	0.05	0.38	25%
and	504.0	510.0	6.0	0.09	0.04	0.00	33%
and	516.0	518.0	2.0	0.13	0.01	0.00	0%
and	536.0	546.0	10.0	0.12	0.05	0.20	40%
and	564.0	566.0	2.0	0.06	0.06	1.00	0%
and	604.0	608.0	4.0	0.19	0.05	5.00	0%
and	632.0	648.0	16.0	0.15	0.05	0.00	13%
and	654.0	656.0	2.0	0.10	0.05	0.00	0%

Table 18: Trundle Park prospect: TRDD017

Reported July 8th, 2021, "Exploration portfolio drilling update"

Hole ID	From (m)	To (m)	Interval (m)		Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD018	12.0	20.0	8.0	*1	0.27	0.01	1.60	29%
including	17.7	20.0	2.4	1	0.37	0.01	1.30	0%
and	42.0	88.0	46.0		0.18	0.02	1.96	13%
including	54.0	88.0	34.0		0.21	0.02	2.00	0%
incl.	72.0	74.0	2.0		0.41	0.03	2.00	0%
incl.	78.0	82.0	4.0		0.33	0.03	3.00	0%
and	98.0	100.0	2.0		0.11	0.01	1.00	0%
and	108.0	110.0	2.0		0.33	0.02	1.00	0%
and	118.0	120.0	2.0		0.25	0.01	0.00	0%
and	130.0	142.0	12.0		0.18	0.01	0.17	17%
including	134.0	140.0	6.0		0.27	0.01	0.00	0%
and	152.0	196.0	44.0		0.37	0.03	1.27	32%
including	162.0	166.0	4.0		2.12	0.07	1.00	0%
incl.	164.0	166.0	2.0		2.62	0.06	1.00	0%
and	214.0	218.0	4.0		0.18	0.06	1.00	0%
and	344.0	346.0	2.0		0.11	0.01	3.00	0%
and	388.0	390.0	2.0		0.10	0.02	1.00	0%
and	418.0	420.0	2.0		0.11	0.04	3.00	0%
and	452.0	454.0	2.0		0.28	0.04	2.00	0%
and	482.0	483.6	1.6		0.21	0.03	1.00	0%

Table 19: Trundle Park prospect: TRDD018

Reported July 8th, 2021, "Exploration portfolio drilling update"

Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off; ¹Interpreted near surface skarn gold and copper intercepts are calculated using a lower cut of 0.20g/t and 0.10% respectively. Internal dilution is below cut off; and, * Dilutions related with Core loss

Table 20: Mordialloc prospect: TRDD019

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD019	2.0	4.0	2.0	0.12	0.00	0.00	0%
and	50.0	54.0	4.0	0.11	0.04	0.50	0%
and	88.0	108.0	20.0	0.20	0.07	2.50	20%
including	92.0	100.0	8.0	0.32	0.07	3.25	0%
incl.	92.0	94.0	2.0	0.55	0.15	5.00	0%
and	146.0	154.0	8.0	0.05	0.10	12.25	0%
and	248.0	250.0	2.0	0.20	0.01	4.00	0%
and	258.0	260.0	2.0	0.29	0.02	14.00	0%
and	324.0	326.0	2.0	0.03	0.08	24.00	0%
and	380.0	386.0	6.0	0.02	0.05	5.67	33%
and	418.0	420.0	2.0	0.01	0.05	5.00	0%
and	446.0	448.0	2.0	0.16	0.04	8.00	0%
and	512.0	514.0	2.0	0.01	0.05	2.00	0%
and	854.0	860.0	6.0	0.03	0.07	15.67	0%
and	864.0	866.0	2.0	0.05	0.08	8.00	0%
and	886.0	888.0	2.0	0.04	0.06	2.00	0%
and	902.0	904.0	2.0	0.05	0.08	15.00	0%

Reported July 8th, 2021, "Exploration portfolio drilling update"

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD020	28.0	290.0	262.0	0.04	0.08	14.42	21%
including	28.0	48.0	20.0	0.12	0.08	15.80	0%
including	54.0	66.0	12.0	0.02	0.08	9.33	0%
including	68.0	80.0	12.0	0.02	0.07	36.83	0%
including	82.0	150.0	68.0	0.04	0.11	24.18	0%
including	152.0	162.0	10.0	0.04	0.07	22.00	0%
including	184.0	198.0	14.0	0.03	0.07	3.86	0%
including	202.0	206.0	4.0	0.09	0.15	9.00	0%
incl.	204.0	206.0	2.0	0.14	0.21	12.00	0%
including	208.0	224.0	16.0	0.04	0.07	5.13	0%
including	246.0	262.0	16.0	0.06	0.08	11.00	0%
including	272.0	278.0	6.0	0.06	0.08	9.00	0%
including	284.0	290.0	6.0	0.04	0.07	5.00	0%
and	316.0	322.0	6.0	0.14	0.04	5.67	0%
and	330.0	336.0	6.0	0.05	0.08	6.33	0%
and	340.0	342.0	2.0	0.12	0.08	32.00	0%
and	360.0	364.0	4.0	0.07	0.07	7.00	0%
and	382.0	392.0	10.0	0.17	0.03	1.80	20%
including	384.0	388.0	4.0	0.24	0.04	2.00	0%
and	404.0	412.0	8.0	0.12	0.02	1.75	25%
including	410.0	412.0	2.0	0.18	0.01	1.00	0%
and	714.0	716.0	2.0	0.03	0.07	8.00	0%

Table 21: Mordialloc prospect: TRDD020

Reported July 8th, 2021, "Exploration portfolio drilling update"

Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off

Table 22: Mordialloc prospect: TRDD021

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD021	56.0	88.0	32.0	0.11	0.06	4.50	19%
including	60.0	68.0	8.0	0.20	0.13	4.50	0%
and	106.0	118.0	12.0	0.11	0.07	3.67	17%
including	114.0	118.0	4.0	0.19	0.11	5.00	0%
and	182.0	184.0	2.0	0.11	0.05	8.00	0%
and	214.0	220.0	6.0	0.13	0.10	11.00	33%
including	218.0	220.0	2.0	0.23	0.16	4.00	0%
and	634.0	644.0	10.0	0.60	0.13	6.40	40%
including	642.0	644.0	2.0	2.84	0.47	5.00	0%

Reported Appendix to Management's Discussion and Analysis for the year ended December 31st 2021

Usla ID	E	T = (m)	Internal (m)	A (- (+)	C. 10/1	NA= ()	D:1
Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	ivio (ppm)	Dilution (%)
TRDD022	234.0	236.0	2.0	0.28	0.01	3.00	0%
and	240.0	248.0	8.0	0.33	0.01	1.50	25%
including	246.0	248.0	2.0	1.02	0.01	1.00	0%
and	670.0	832.0	162.0	0.24	0.04	9.09	30%
including	684.0	730.0	46.0	0.54	0.08	8.43	4%
including	686.0	694.0	8.0	0.66	0.07	3.50	0%
incl.	688.0	690.0	2.0	1.13	0.08	2.00	0%
including	712.0	730.0	18.0	0.75	0.09	14.22	0%
incl.	726.0	730.0	4.0	1.12	0.11	12.00	0%
including	794.0	818.0	24.0	0.13	0.04	7.83	8%
including	826.0	832.0	6.0	0.15	0.04	5.00	0%
and	860.0	864.0	4.0	0.14	0.05	13.00	0%
and	920.0	922.0	2.0	0.32	0.06	2.00	0%
and	926.0	928.0	2.0	0.10	0.02	6.00	0%
and	932.0	938.0	6.0	0.13	0.03	17.67	0%

Table 23: Trundle Park prospect: TRDD022

Reported August 17th, 2021, "Significant gold-bearing intervals at Trundle Park"

Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off

Table 24: Trundle Parl	k prospect: TRDD023
------------------------	---------------------

Hole ID	From (m)	To (m)	Interval (m)		Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD023	4.0	5.3	1.4		0.04	0.05	1.00	0%
and	27.6	34.5	6.9	*	0.05	0.12	1.45	12%
and	66.0	68.0	2.0		0.06	0.08	2.00	0%
and	164.0	166.0	2.0		0.10	0.01	0.00	0%
and	170.0	174.0	4.0		0.29	0.00	1.00	0%
and	200.0	202.0	2.0		0.16	0.05	1.00	0%
and	206.0	208.0	2.0		0.03	0.06	1.00	0%
and	218.0	220.0	2.0		0.14	0.00	0.00	0%
and	224.0	226.0	2.0		0.10	0.01	1.00	0%
and	258.0	270.0	12.0		0.34	0.03	1.83	17%
including	264.0	266.0	2.0		1.38	0.07	3.00	0%
and	276.0	278.0	2.0		0.11	0.01	2.00	0%

Reported December 7th, 2021, "*Porphyry system extended to surface and depth at Trundle Park*" Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off; and, * Dilutions related with Core loss

Table 25: Trundle Park prospect: TRDD026

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD026	694.0	696.0	2.0	0.09	0.02	1.00	0%
and	702.0	704.0	2.0	0.28	0.02	2.00	0%

Reported December 7th, 2021, "*Porphyry system extended to surface and depth at Trundle Park*" Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD014W1	306.0	308.0	2.0	0.36	0.31	0.00	0%
and	358.0	400.0	42.0	0.42	0.12	1.57	14%
including	360.0	366.0	6.0	0.19	0.10	1.33	0%
including	382.0	400.0	18.0	0.81	0.22	2.56	0%
incl.	388.0	398.0	10.0	1.13	0.32	4.00	0%
and	458.0	506.0	48.0	0.19	0.03	2.25	29%
including	460.0	472.0	12.0	0.33	0.02	2.17	0%
including	476.0	484.0	8.0	0.20	0.02	1.00	25%
including	492.0	506.0	14.0	0.21	0.06	3.43	0%
and	518.0	520.0	2.0	0.12	0.04	5.00	0%
and	526.0	528.0	2.0	0.11	0.02	25.00	0%
and	540.0	552.0	12.0	0.12	0.02	8.83	33%
including	546.0	548.0	2.0	0.27	0.05	25.00	0%
and	576.0	588.0	12.0	0.09	0.02	9.00	33%
including	582.0	588.0	6.0	0.11	0.03	15.67	0%
and	596.0	718.0	122.0	0.16	0.03	6.08	26%
including	604.0	612.0	8.0	0.17	0.03	7.00	0%
including	622.0	630.0	8.0	0.25	0.04	11.25	0%
including	662.0	664.0	2.0	0.36	0.05	4.00	0%
including	680.0	718.0	38.0	0.19	0.03	5.16	5%
incl.	690.0	692.0	2.0	0.43	0.07	25.00	0%
incl.	702.0	706.0	4.0	0.36	0.04	1.50	0%
and	750.0	760.0	10.0	0.21	0.06	0.80	0%
and	860.0	876.0	16.0	0.11	0.07	13.75	0%
including	874.0	876.0	2.0	0.25	0.06	21.00	0%

Table 26: Trundle Park prospect: TRDD014W1

Reported December 7th, 2021, "Porphyry system extended to surface and depth at Trundle Park"

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD028	64.0	70.0	6.0	0.07	0.09	3.67	0%
and	92.0	94.0	2.0	0.01	0.05	0.00	0%
and	382.0	384.0	2.0	0.09	0.07	0.00	0%
and	402.0	404.0	2.0	0.13	0.00	2.00	0%
and	426.0	428.0	2.0	0.46	0.00	6.00	0%
and	482.0	490.0	8.0	0.11	0.08	7.75	25%
including	482.0	484.0	2.0	0.12	0.18	0.00	0%
and	528.0	562.0	34.0	0.24	0.02	1.82	29%
including	528.0	536.0	8.0	0.16	0.04	1.50	25%
incl.	534.0	536.0	2.0	0.35	0.11	1.00	0%
including	548.0	562.0	14.0	0.43	0.02	1.86	0%
incl.	556.0	558.0	2.0	1.03	0.05	5.00	0%
and	570.0	578.0	8.0	0.11	0.01	1.50	25%
and	592.0	594.0	2.0	0.11	0.01	7.00	0%
and	604.0	610.0	6.0	0.16	0.02	2.67	33%
and	616.0	618.0	2.0	0.14	0.01	2.00	0%
and	626.0	652.0	26.0	0.14	0.02	2.08	23%
including	626.0	640.0	14.0	0.18	0.02	1.57	0%
and	660.0	662.0	2.0	0.12	0.02	1.00	0%
and	698.0	700.0	2.0	0.13	0.03	7.00	0%
and	712.0	714.0	2.0	0.13	0.01	1.00	0%
and	734.0	742.0	8.0	0.16	0.01	2.00	25%
including	734.0	738.0	4.0	0.22	0.01	2.00	0%
and	746.0	748.0	2.0	0.12	0.02	1.00	0%
and	752.0	754.0	2.0	0.19	0.05	3.00	0%
and	758.0	760.0	2.0	0.15	0.05	3.00	0%
and	764.0	766.0	2.0	0.16	0.05	4.00	0%
and	768.0	770.0	2.0	0.12	0.03	4.00	0%
and	772.0	780.0	8.0	0.12	0.03	2.75	25%
and	782.0	784.0	2.0	0.11	0.01	2.00	0%
and	794.0	796.0	2.0	0.11	0.02	5.00	0%
and	822.0	824.0	2.0	0.11	0.02	3.00	0%

Table 27: Trundle Park prospect: TRDD028

Reported January 25th, 2022, *"Newly discovered higher-grade zones expand the large-scale gold-copper system at Trundle Park"* Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off

Table 28: Trundle Park prospect: TRDD029

Summary of skarn zone intervals

TRDD029	Interval (m)	Au (g/t)	Cu (%)	From (m)
Upper Skarn	36	0.68	0.29	732
Middle Skarn	139	0.17	0.12	828
including	34	0.38	0.30	931
incl.	7	0.66	0.39	942
Lower Skarn	13	0.13	0.07	981
Lower Skarn	8	0.11	0.01	1004
	196	0.26	0.14	

Summary of Summary of significant intervals

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)	Mo (ppm)	Dilution (%)
TRDD029	148.0	150.0	2.0	0.19	0.00	0.00	0%
and	384.0	388.0	4.0	0.04	0.11	6.00	0%
and	452.0	454.0	2.0	0.08	0.11	1.00	0%
and	464.0	466.0	2.0	0.06	0.19	1.00	0%
and	472.0	474.0	2.0	0.02	0.11	1.00	0%
and	536.0	538.0	2.0	0.12	0.03	4.00	0%
and	588.0	590.0	2.0	0.15	0.13	1.00	0%
and	630.0	632.0	2.0	0.15	0.12	1.00	0%
and	732.0	768.0	36.0	0.68	0.29	1.61	6%
including	732.0	736.0	4.0	1.19	0.59	2.50	0%
incl.	734.0	736.0	2.0	1.94	0.94	0.00	0%
including	742.0	764.0	22.0	0.78	0.32	0.82	0%
incl.	752.0	754.0	2.0	1.08	0.39	0.00	0%
incl.	756.0	758.0	2.0	0.96	0.48	1.00	0%
and	828.0	967.0	139.0	0.17	0.12	8.78	32%
including	931.0	965.0	34.0	0.38	0.30	9.59	0%
incl.	935.0	942.0	7.0	0.66	0.39	5.57	0%
incl.	938.0	939.0	1.0	1.17	0.63	2.00	0%
including	948.0	953.0	5.0	0.59	0.44	4.40	0%
including	959.0	965.0	6.0	0.40	0.28	6.17	0%
and	970.0	971.0	1.0	0.19	0.04	10.00	0%
and	972.0	975.0	3.0	0.13	0.03	14.33	0%
and	977.0	980.0	3.0	0.35	0.13	2.67	0%
and	981.0	994.0	13.0	0.13	0.07	2.85	46 %
including	988.0	994.0	6.0	0.18	0.13	3.00	0%
and	1004.0	1012.0	8.0	0.11	0.01	3.25	25%

Intervals for Upper Skarn zone reported January 25th, 2022, "Newly discovered higher-grade zones expand the large-scale gold-copper system at Trundle Park"

1

Balance of the hole reported March 15, 2022 - Further confirmation of new discovery and broad intervals at Trundle Park Porphyry gold and copper intercepts are calculated using a lower cut of 0.10g/t and/or 0.05% respectively. Internal dilution is below cut off

Trundle Project background

The Trundle Project is located in the Junee-Narromine volcanic belt of the Macquarie Arc, less than 30km from the mill at the Northparkes mines in a brownfield setting within the westerly rift separated part of the Northparkes Igneous Complex ("NIC"). The NIC hosts a mineral endowment of approximately 24Moz AuEq (at 0.6% Cu and 0.2g/t Au) and is Australia's second largest porphyry mine comprising of 22 discoveries, 9 of which with positive economics.

The Trundle Project includes one single license covering 167km^2 and was secured by Kincora in the March 2020 agreement with RareX Limited ("REE" on the ASX). Kincora is the operator, holds a 65% interest in the Trundle Project and is the sole funder until a positive scoping study is delivered at which time a fund or dilute joint venture will be formed.

For further information on the Trundle and Northparkes Projects please refer to Kincora's website: https://kincoracopper.com/the-trundle-project/

Forward-Looking Statements

Certain information regarding Kincora contained herein may constitute forward-looking statements within the meaning of applicable securities laws. Forward-looking statements may include estimates, plans, expectations, opinions, forecasts, projections, guidance or other statements that are not statements of fact. Although Kincora believes that the expectations reflected in such forward-looking statements are reasonable, it can give no assurance that such expectations will prove to have been correct. Kincora cautions that actual performance will be affected by a number of factors, most of which are beyond its control, and that future events and results may vary substantially from what Kincora currently foresees. Factors that could cause actual results to differ materially from those in forward-looking statements include market prices, exploitation and exploration results, continued availability of capital and financing and general economic, market or business conditions. The forward-looking statements are expressly qualified in their entirety by this cautionary statement. The information contained herein is stated as of the current date and is subject to change after that date. Kincora does not assume the obligation to revise or update these forward-looking statements, except as may be required under applicable securities laws.

Drilling, Assaying, Logging and QA/QC Procedures

Sampling and QA/QC procedures are carried out by Kincora Copper Limited, and its contractors, using the Company's protocols as per industry best practise.

All samples have been assayed at ALS Minerals Laboratories, delivered to Orange, NSW, Australia. In addition to internal checks by ALS, the Company incorporates a QA/QC sample protocol utilizing prepared standards and blanks for 5% of all assayed samples. Diamond drilling was undertaken by DrillIt Consulting Pty Ltd, from Parkes, under the supervision of our field geologists. All drill

core was logged to best industry standard by well-trained geologists and Kincora's drill core sampling protocol consisted a collection of samples over all of the logged core.

Sample interval selection was based on geological controls or mineralization or metre intervals, and/or guidance from the Technical Committee provided subsequent to daily drill and logging reports. Sample intervals are cut by the Company and delivered by the Company direct to ALS.

All reported assay results are performed by ALS and widths reported are drill core lengths. There is insufficient drilling data to date to demonstrate continuity of mineralised domains and determine the relationship between mineralization widths and intercept lengths.

True widths are not known at this stage.

Significant mineralised intervals for drilling at the Trundle project are reported based upon two different cut off grade criteria:

- Interpreted near surface skarn gold and copper intercepts are calculated using a lower cut of 0.20g/t and 0.10% respectively; and,
- Porphyry intrusion system gold and copper intercepts are calculated using a lower cut of 0.10g/t and 0.05% respectively.

Significant mineralised intervals are reported with dilution on the basis of:

- Internal dilution is below the aforementioned respective cut off's; and,
 - Dilutions related with core loss as flagged by a "*".

The following assay techniques have been adopted for drilling at the Trundle project:

- Gold: Au-AA24 (Fire assay), reported.
- Multiple elements: ME-ICP61 (4 acid digestion with ICP-AES analysis for 33 elements) and ME-MS61 (4 acid digestion with ICP-AES & ICP-MS analysis for 48 elements), the latter report for TRDD001 and former reported for holes TRDD002-TRDD022.
- Copper oxides and selected intervals with native copper: ME-ICP44 (Aqua regia digestion with ICP-AES analysis) has been assayed, but not reported.
- Assay results >10g/t gold and/or 1% copper are re-assayed.

Qualified Person

The scientific and technical information in this news release was prepared in accordance with the standards of the Canadian Institute of Mining, Metallurgy and Petroleum and National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101") and was reviewed, verified and compiled by Kincora's geological staff under the supervision of Paul Cromie (BSc Hons. M.Sc. Economic Geology, PhD, member of the Australian Institute of Mining and Metallurgy and Society of Economic Geologists), Exploration Manager Australia, who is the Qualified Persons for the purpose of NI 43-101.

JORC Competent Person Statement

Information in this report that relates to Exploration Results, Mineral Resources or Ore Reserves has been reviewed and approved by Mr. Paul Cromie, a Qualified Person under the definition established by JORC and have sufficient experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity being undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Paul Cromie (BSc Hons. M.Sc. Economic Geology, PhD, member of the Australian Institute of Mining and Metallurgy and Society of Economic Geologists), is Exploration Manager Australia for the Company.

Mr. Paul Cromie consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

The review and verification process for the information disclosed herein for the Trundle, Fairholme and Nyngan projects have included the receipt of all material exploration data, results and sampling procedures of previous operators and review of such information by Kincora's geological staff using standard verification procedures.

JORC TABLE 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections).

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is 	 Kincora Copper Limited is the operator of the Trundle Project, with drilling using diamond coring methods by DrillIt Consulting Pty Ltd, from which sub-samples were taken over 2 m intervals and pulverised to produce suitable aliquots for fire assay and ICP-MS. Diamond drilling was used to obtain orientated samples from the ground, which was then structurally, geotechnically and geologically logged. Sample interval selection was based on geological controls and mineralization. Sampling was completed to industry standards with t4 core for PQ and HQ diameter diamond core and t2 core for NQ diameter diamond core sent to the lab for each sample interval. Samples were assayed via the following methods: Gold: Au-AA24 (Fire assay) Multiple elements: ME-ICP61 (4 acid digestion with ICP-AES analysis for 33 elements) and ME- MS61 (4 acid digestion with ICP-AES & ICP-MS analysis for 48 elements) Copper oxides and selected intervals with native copper: ME-ICP44 (Aqua regia digestion with ICP- AES analysis) has been assayed, but not reported Assay results >10g/t gold and/or 1% copper are re-assayed Historic sampling on other projects included soils, rock chips and drilling (aircore, RAB, RC and diamond core). Drilling by Kincora at Trundle used diamond core drilling with PQ, HQ and NQ diameter core depending on drilling depth. All Kincora core was oriented using a Reflex ACE electronic tool. Historic drilling on Kincora projects used a variety
	oriented and if so, by what method, etc.).	of methods including aircore, rotary air blast, reverse circulation, and diamond core. Methods are clearly stated in the body of the previous reports with any historic exploration results.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drill Core recovery was logged. Diamond drill core recoveries are contained in the body of the announcement. Core recoveries were recorded by measuring the total length of recovered core expressed as a proportion of the drilled run length. Core recoveries for most of Kincora's drilling were in average over 96.7%, with two holes averaging 85.0% Poor recovery zones are generally associated with later fault zones and the upper oxidised parts of drill holes. There is no relationship between core recoveries and grades.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or 	 All Kincora holes are geologically logged for their entire length including lithology, alteration, mineralisation (sulphides and oxides), veining and structure. Logging is mostly qualitative in nature, with some visual estimation of mineral proportions that is semi-quantitative. Measurements are taken on

	quantitative in nature. Core (or	structures where core is orientated.
	costean, channel, etc.) photography.	 All core is photographed.
	• The total length and percentage of the relevant intersections logged.	• Historic drilling was logged with logging mostly recorded on paper in reports lodged with the NSW Department of Mines.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Once all geological information was extracted from the drill core, the sample intervals were cut with an Almonte automatic core saw, bagged and delivered to the laboratory. This is an appropriate sampling technique for this style of mineralization and is the industry standard for sampling of diamond drill core. PQ and HQ sub-samples were quarter core and NQ half core. Sample sizes are considered appropriate for the disseminated, generally fine-grained nature of mineralisation being sampled. Duplicate sampling on some native copper bearing intervals in TRDD001 was undertaken to determine if quarter core samples were representative, with results indicating that sampling precision was acceptable. No other duplicate samples were taken.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Gold was determined by fire assay and a suite of other elements including Cu and Mo by 4-acid digest with ICP-AES finish at ALS laboratories in Orange and Brisbane. Over-grade Cu (>1%) was diluted and re-assayed by AAS. Techniques are considered total for all elements. Native copper mineralisation in TRDD001 was re-assayed to check for any effects of incomplete digestion and no issues were found. For holes up to TRDD007 every 20th sample was either a commercially supplied pulp standard or pulp blank. After TRDD007 coarse blanks were utilised. Results for blanks and standards are checked upon receipt of assay certificates. All standards have reported within certified limits of accuracy and precision. Historic assays on other projects were mostly gold by fire assay and other elements by ICP.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intercepts were calculated by Kincora's geological staff. No twinned holes have been completed. The intercepts have not been verified by independent personal. Logging data is captured digitally on electronic logging tablets and sampling data is captured on paper logs and transcribed to an electronic format into a relational database maintained at Kincora's Mongolian office. Transcribed data is verified by the logging geologist. Assay data is received from the laboratory in electronic format and uploaded to the master database. No adjustments to assay data have been made. Outstanding assays are outlined in the body of the announcement.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 Collar positions are set up using a hand-held GPS and later picked up with a DGPS to less than 10cm horizontal and vertical accuracy. Drillholes are surveyed downhole every 30m using an electronic multi-shot magnetic instrument.

	 Specification of the grid system used. Quality and adequacy of topographic control. 	 Due to the presence of magnetite in some alteration zones, azimuth readings are occasionally unreliable and magnetic intensity data from the survey tool is used to identify these readings and flag them as such in the database. Grid system used is the Map Grid of Australia Zone 55, GDA 94 datum. Topography in the area of Trundle is near-flat and drill collar elevations provide adequate control
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Kincora drilling at Trundle is at an early stage, with drill holes stepping out from previous mineralisation intercepts at various distances. Data spacing at this stage is insufficient to establish the continuity required for a Mineral Resource estimate. No sample compositing was applied to Kincora drilling. Historic drilling on Trundle and other projects was completed at various drill hole spacings and no other projects have spacing sufficient to establish a mineral resource.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientation of Kincora drilling at Trundle has changed as new information on the orientation of mineralisation and structures has become available. The angled drill holes were directed as best possible across the known lithological and interpreted mineralised structures. There does not appear to be a sampling bias introduced by hole orientation in that drilling not parallel to mineralised structures.
Sample security	The measures taken to ensure sample security.	• Kincora staff or their contractors oversaw all stages of drill core sampling. Bagged samples were placed inside polyweave sacks that were zip-tied, stored in a locked container and then transported to the laboratory by Kincora field personnel.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	Mining Associates has completed an review of sampling techniques and procedures dated January 31st, 2021, as outlined in the Independent Technical Report included in the ASX listing prospectus, which is available at: https://www.kincoracopper.com/investors/asx- prospectus

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Kincora holds three exploration licences in NSW and rights to a further six exploration licences through an agreement with RareX Limited (RareX, formerly known as Clancy Exploration). EL8222 (Trundle), EL6552 (Fairholme), EL6915 (Fairholme Manna), EL8502 (Jemalong), EL6661 (Cundumbul) and EL7748 (Condobolin) are in a JV with RareX where Kincora has a 65% interest in the respective 6 licenses and is the operator /sole funder of all further exploration until a positive scoping study or preliminary economic assessment ("PEA") on a project by project basis. Upon completion of PEA, a joint venture will be formed with standard funding/dilution and right of first refusal on transfers. EL8960 (Nevertire), EL8929 (Nyngan) and EL9320 (Mulla) are wholly owned by Kincora. All licences are in good standing and there are no known impediments to obtaining a licence to operate.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 All Kincora projects have had previous exploration work undertaken. The review and verification process for the information disclosed herein and of other parties for the Trundle project has included the receipt of all material exploration data, results and sampling procedures of previous operators and review of such information by Kincora's geological staff using standard verification procedures. Further details of exploration efforts and data of other parties are providing in the March 1st, 2021, Independent Technical Report included in the ASX listing prospectus, which is available at: <u>https://www.kincoracopper.com/investors/asx- prospectus</u>
Geology	• Deposit type, geological setting and style of mineralisation.	 All projects ex EL7748 (Condobolin) are within the Macquarie Arc, part of the Lachlan Orogen. Rocks comprise successions of volcanosedimentary rocks of Ordovician age intruded by suites of subduction arc-related intermediate to felsic intrusions of late Ordovician to early Silurian age. Kincora is exploring for porphyry-style copper and gold mineralisation, copper-gold skarn plus related high sulphidation and epithermal gold systems.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the 	 Detailed information on Kincora's drilling at Trundle is given in the body of the report.

	understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 For Kincora drilling at Trundle the following methods were used: Interpreted near-surface skarn gold-copper intercepts were aggregated using a cut-off grade of 0.20 g/t Au and 0.10% Cu respectively. Porphyry gold-copper intercepts were aggregated using a cut-off grade of 0.10 g/t Au and 0.05% Cu respectively. Internal dilution below cut off included was generally less than 25% of the total reported intersection length. Core loss was included as dilution at zero values. Average gold and copper grades calculated as averages weighted to sample lengths. Historic drilling results in other project areas are reported at different cut-off grades depending on the nature of mineralisation.
Relationship between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Due to the uncertainty of mineralisation orientation, the true width of mineralisation is not known at Trundle. Intercepts from historic drilling reported at other projects are also of unknown true width.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Relevant diagrams are included in the body of the report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Intercepts reported for Kincora's drilling at Trundle are zones of higher grade within unmineralised or weakly anomalous material.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No other exploration data is considered material to the reporting of results at Trundle. Other data of interest to further exploration targeting is included in the body of the report. Historic exploration data coverage and results are included in the body of the report for Kincora's other projects.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Drilling at the Mordialloc and Trundle Park targets are ongoing at the time of publication of this report and plans for further step-out drilling are in place at both the Trundle Park and Mordialloc prospects. Further drilling is proposed at other Trundle project areas, including air core programs at the Mordialloc, Dunns and Ravenswood South prospects, that have complementary but insufficiently tested geochemistry and geophysical targets with the aim to find: (a) and expand near surface copper-gold skarn mineralization overlying or adjacent to (b) underlying copper-gold porphyry systems.